Ecophysiology modeling by artificial neural networks for different spacings in eucalypt
DOI:
https://doi.org/10.14295/cs.v9i3.2741Palavras-chave:
biomassa de lenho, densidade de plantio, ecofisiologia, prognose, RNAResumo
Growth and production models are widely used to predict yields and support forestry decisions. Artificial Neural Networks (ANN) are computational models that simulate the brain and nervous system human functions, with a memory capable of establishing mathematical relationships between independent variables to estimate the dependent variables. This work aimed to evaluate the efficiency of eucalypt biomass modeling under different spacings using Multilayer Perceptron networks, trained through the backpropagation algorithm. The experiment was installed in randomized block, and the effect of five planting spacings was studied in three blocks: T1 – 3.0 x 0.5 m; T2 – 3.0 x 1.0 m; T3 – 3.0 x 1.5 m; T4 – 3.0 x 2.0 m e T5 – 3.0 x 3.0 m. A continuous forest inventory was carried out at the ages of 48, 61, 73, 85 and 101 months. The leaf area, leaf perimeter and specific leaf area were measured at 101 months in one sample tree per experimental unit. Two thousand ANN were trained, using all inventoried trees, to estimate the eco-physiological attributes and the prognosis of the wood biomass. The artificial neural networks modeling was adequate to estimate eucalypt wood biomass, according to age and under different spacings, using the diameter-at-breast-height and leaf perimeter as predictor variables.
Downloads
Downloads
Arquivos adicionais
Publicado
Como Citar
Edição
Seção
Licença
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua, respeitando, porém, o estilo dos autores. As provas finais serão enviadas aos autores. Os trabalhos publicados passam a ser propriedade da revista Comunicata Scientiae, ficando sua reimpressão total ou parcial, sujeita à autorização expressa da direção do periódico. Deve ser consignada a fonte de publicação original. Os originais não serão evolvidos aos autores. As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.